
Eur. Phys. J. B 7, 183–186 (1999) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. We study cutoff and lattice effects in the O(n) symmetric ϕ4 theory for a d-dimensional cubic
geometry of size L with periodic boundary conditions. In the large-n limit above Tc, we show that ϕ4

field theory at finite cutoff Λ predicts the nonuniversal deviation ∼ (ΛL)−2 from asymptotic bulk critical
behavior that violates finite-size scaling and disagrees with the deviation ∼ e−cL that we find in the ϕ4

lattice model. The exponential size dependence requires a non-perturbative treatment of the ϕ4 model.
Our arguments indicate that these results should be valid for general n and d > 2.

PACS. 05.70.Jk Critical point phenomena – 64.60.-i General studies of phase transitions –
75.40.Mg Numerical simulation studies

The concept of finite-size scaling [1] plays a fundamental
role in the theory of finite-size effects near phase tran-
sitions [1–4] and is indispensable for the analysis of nu-
merical studies of critical phenomena in small systems [5].
Consider, for example, the susceptibility χ(T,L) of a fer-
romagnetic system for T ≥ Tc in a finite geometry of size
L. Finite-size scaling is expected to be valid for large L
and large correlation length ξ ∼ (T−Tc)−ν , with a scaling
form χ(T,L) = Lγ/νf(L/ξ) where γ and ν are bulk crit-
ical exponents and where the scaling function f depends
on the geometry and boundary conditions but not on any
other length scale. In this paper we shall consider only pe-
riodic boundary conditions and cubic geometry, V = Ld.

Finite-size scaling functions have been calculated
within the O(n) symmetric ϕ4 field theory in 2 < d < 4
dimensions [6–9] and quantitative agreement with Monte-
Carlo (MC) data has been found [8–10]. It is the purpose
of the present Rapid Note to call attention to a remarkable
feature that has not been explained by the field-theoretic
calculations. This is the exponential (rather than power-
law) approach

∆χ ≡ χ(T,∞) − χ(T,L) ∼ exp[−Γ (T )L] (1)

towards the asymptotic bulk critical behavior χ(T,∞) ∼
ξγ/ν above Tc, as has been found in several exactly solvable
model systems [1,2,11–14]. By contrast, field theory [6–9]
implies a non-exponential behavior ∆χ ∼ O((L/ξ)−d) in
one-loop order above Tc for d < 4. We are not aware of
numerical tests of this property, e.g., by MC simulations.

We shall analyze this problem on the basis of the exact
result [15] for χ in the large-n limit of the ϕ4 model. In
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particular we shall study the effect of a finite cutoff Λ
and of a finite lattice spacing in the field-theoretic and
lattice version of the ϕ4 theory. We find that field theory
at finite cutoff predicts the leading nonuniversal deviation
∆χ ∼ (ΛL)−2 from bulk critical behavior that violates
finite-size scaling for d > 2 and differs from equation (1).
This is in contrast to the general belief [3–10,15–23] (and
corrects our recent statement [15,23]) that the finite-size
scaling functions of the ϕ4 field theory are universal for
2 < d < 4 (for cubic geometry and periodic boundary
conditions). We shall show that the ϕ4 lattice theory with
a finite lattice spacing accounts for the exponential size-
dependence of equation (1). We shall argue that a loop
expansion destroys this exponential form and that a non-
perturbative treatment [21] of the ϕ4 theory is required.

The ϕ4 field theory is based on the statistical weight
exp(−H) with the Landau-Ginzburg-Wilson continuum
Hamiltonian

H =

∫
V

ddx

[
r0

2
ϕ2

0 +
1

2
(5ϕ0)2 + u0(ϕ2

0)2

]
, (2)

with r0 = r0c+a0t, t = (T−Tc)/Tc where the n-component
field ϕ0(x) has spatial variations on length scales larger
than a microscopic length ã corresponding to a finite cut-
off Λ = π/ã. Since we wish to perform a convincing com-
parison with the finite-size effects of lattice systems which
have a finite lattice constant ã we must keep Λ finite even
if a well defined limit Λ→∞ can formally be performed at
fixed r0−r0c for 2 < d < 4 [6,16,17]. It is well-known that
this limit is justified for bulk systems [17] where finite-
cutoff effects are only subleading corrections to the leading
bulk critical temperature dependence.
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Here we raise the question what kind of finite-size ef-
fects exist at finite Λ. This question was left unanswered
in the renormalization-group arguments of Brézin [16]
and in the explicit field-theoretic calculations of references
[6–10,17–22] which were performed only in the limit Λ→
∞ and where it was tacitly assumed that finite-cutoff ef-
fects are negligible for d < 4. We shall prove for d > 2 and
n→∞ that this assumption is not generally justified for
the field-theoretic ϕ4 model for finite systems.

We shall first examine the susceptibility of the field-
theoretic model

χ = (1/n)

∫
V

ddx〈ϕ0(x)ϕ0(0)〉 (3)

in the large-n limit at fixed u0n. For cubic geometry, V =
Ld, the exact result for d > 2 is determined by the implicit
equation [15]

χ−1 = r0 − r0c − 4u0n∆̃1

+ 4u0n
{
χL−d − χ−1

∫
k

[
k2(χ−1 + k2)

]−1
}
, (4)

∆̃1 =

∫
k

(χ−1 + k2)−1 − L−d
∑
k 6=0

(χ−1 + k2)−1, (5)

where r0c = −4u0n
∫
k

k−2. Here
∫
k

stands for

(2π)−d
∫
ddk with |kj | ≤ Λ, and the summation

∑
k 6=0

runs over discrete k vectors with components kj =
2πmj/L,mj = ±1,±2, . . . , j = 1, 2, . . . , d, in the range
−Λ ≤ kj < Λ. For large L at finite Λ we have found for
d > 2

∆̃1 = I1(χ−1L2)L2−d

+ Λd−2
{
a1(d, χ−1Λ−2)(ΛL)−2 +O

[
(ΛL)−4

]}
, (6)

I1(x)=−(2π)−2

∞∫
0

dy e−(xy/4π2)
[
K(y)d−(π/y)d/2−1

]
, (7)

a1(d, χ−1Λ−2) =
d

3(2π)d−2

∞∫
0

dxx

[∫ 1

−1

dye−y
2x

]d−1

× exp
[
−(1 + χ−1Λ−2)x

]
(8)

with K(y) =
∞∑

m=−∞
e−ym

2

. Near Tc, i.e., for small χ−1Λ−2

at finite Λ, the bulk integral in equation (4) yields for
2 < d < 4∫
k

[
k2(χ−1 + k2)

]−1
=Adχ

ε/2ε−1
{

1+O
[
(χ−1Λ−2)ε/2

]}
(9)

with ε = 4− d and Ad = 22−dπ−d/2(d− 2)−1Γ (3− d/2).
This leads to the large-L and small-t representation at
finite Λ

χ = Lγ/ν P (t(L/ξ0)1/ν , ΛL) (10)

0
1/Λξ

scaling

L1/Λ

non-scaling

finite-

size

Fig. 1. Asymptotic L−1 − ξ−1 plane (schematic plot) above
Tc for the ϕ4 field-theoretic model at finite cutoff Λ in the
large-n limit in three dimensions where L is the system size
and ξ is the bulk correlation length. Finite-cutoff effects be-
come non-negligible in the non-scaling region below the dotted
line. This crossover line has a vanishing slope at the origin
and is determined by equation (15) with γ/ν = 2, γ = 2 and
a1(3, 0) = 0.226 for d = 3. Well above this line the cutoff de-
pendence is negligible in equation (11). The arrow indicates an
approach towards bulk critical behavior at constant 0 < t� 1
through the non-scaling region where equation (14) is valid.

where the function P is determined implicitly by

P−1/γ = t(L/ξ0)1/ν

+ εA−1
d

[
P − I1(P−1) + a1(d, 0)(ΛL)d−4

]
, (11)

apart from O
[
(ΛL)d−6

]
corrections, with the critical ex-

ponents ν = (d − 2)−1 and γ = 2/(d − 2), and with the
bulk correlation-length amplitude ξ0 [15]. We note that
the term I1(P−1) is a k 6= 0 contribution whereas the
term ∼ P on the r.h.s. of equation (11) comes from the
k = 0 mode.

At first sight, the Λ dependent term in equation (11)
seems to be a subleading correction and appears to be
negligible for large L. This is asymptotically correct as
long as P − I1(P−1) > 0 does not vanish in the large-L
limit. This is indeed the case for t(L/ξ0)1/ν < ∞, i.e.,
as long as the critical point is approached at finite ratio
L/ξ. This corresponds to paths in the L−1 − ξ−1 plane
(Fig. 1) that approach the origin L−1 = 0, ξ−1 = 0 along
curves with a non-vanishing asymptotic slope ξ/L > 0.
Along these paths the function P remains finite and hence
P−I1(P−1) remains non-zero (positive) which was tacitly
assumed previously [15] where the Λ-dependent terms in
equation (11) were dropped (see Eq. (62) of Ref. [15]).

There exist, however, significant paths in the L−1−ξ−1

plane where t(L/ξ0)1/ν becomes arbitrarily large. This
includes paths at constant t > 0 or ξ < ∞ with in-
creasing L corresponding to an approach towards the
asymptotic bulk value χb (arrow in Fig. 1). We empha-
size that these paths lie entirely in the asymptotic region
ξ � Λ−1, L � Λ−1, χb = ξ2 � Λ−2. In such limits the
quantity P ∼ (ξ/L)γ/ν approaches zero. As a remarkable
feature we find that in equation (11) the function I1(P−1)
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(which originates from the k 6= 0 modes) completely can-
cels the term P (which comes from the k = 0 mode)
according to the small-P representation

I1(P−1) = P +O
[
P (3−d)/4 exp(−P−1/2)

]
. (12)

In other words, the higher-mode contribution ∼ I1(P−1)
does not represent a “correction” to the lowest-mode term
P but becomes as large as the lowest-mode term itself.
This result is quite plausible because above Tc, at fixed
temperature T − Tc > 0, the lowest mode does not play
a significant role and does not become dangerous in the
bulk limit, unlike the case T ≤ Tc where the separation of
the lowest mode is an important concept [6,7].

The crucial consequence of equation (12) is that
the term P − I1(P−1) in equation (11) is reduced to
the exponentially small contribution ∼ exp(−P−1/2) ∼
exp(−L/ξ). This implies that the leading finite-size de-
viation from bulk critical behavior is now governed by
the cutoff-dependent power-law term (ΛL)d−4 in equa-
tion (11) which was dropped in reference [15]. This leads
to the explicitly Λ dependent result, at finite t � 1 and
finite ΛL� 1,

P (t( L
ξ0

)1/ν , ΛL)=
[
t( L
ξ0

)1/ν+εA−1
d a1(d, 0)(ΛL)d−4

]−γ
,

(13)

χ = χb

[
1−

ε2d−1πd/2

Γ (3− d/2)
a1(d, 0)(Λξ)d−2(ΛL)−2

]
, (14)

apart from O
[
(ΛL)−4, e−L/ξ

]
corrections. Equation (14)

is valid for 2 < d < 4 and is applicable to the region below
the dotted line in Figure 1. This line is a representative
of a smooth crossover region and may be defined by re-
quiring that the cutoff dependent term in equation (11) is
as large as the term P − I1(P−1). In the latter term, P
can be approximated by (L/ξ)−γ/ν, i.e., the dotted line is
determined by

(L/ξ)−γ/ν − I1((L/ξ)γ/ν) = a1(d, 0)(ΛL)d−4. (15)

Equation (15) represents a line in a crossover region sepa-
rating the scaling region (where cutoff effects can be con-
sidered as small corrections) from the nonscaling region
(where cutoff effects are dominant) close the bulk limit.

The power law ∼ (ΛL)−2 in equation (14) disagrees
with the exact result for the spherical model on a lat-
tice where an exponential L dependence, analogous to
equation (1), has been found [12,14] for general d > 2.
This proves that ϕ4 field theory at finite cutoff does not
correctly describe the leading finite-size deviations from
bulk critical behavior of spin systems on a lattice above
Tc, not only for d > 4, as stated in reference [23], but
more generally for d > 2, at least in the large-n limit.
Furthermore, the result in equation (14) violates finite-
size scaling in the asymptotic region where L−γ/νχ should
only depend on L/ξ, not on ΛL. Thus ϕ4 field theory
at finite cutoff is inconsistent with usual finite-size scal-
ing not only for d > 4, but more generally for d > 2,

at least in the large-n limit. This is not in conflict with
the renormalization-group arguments of Brézin [16] who
considered only the limit of infinite cutoff in which the
non-scaling region (Fig. 1) shrinks to zero. The existence
of the non-scaling region for the field-theoretic ϕ4 model
below four dimensions has been overlooked in Section 4.1
of our recent work [15].

In the following we briefly analyze the corresponding
properties in the ϕ4 lattice model for d > 2. The ϕ4 lattice
Hamiltonian reads

Ĥ(ϕi)= ãd
{∑

i

[ r̂0

2
ϕ2
i +û0(ϕ2

i )
2]+∑

ij

1

2ã2
Jij(ϕi−ϕj)

2
}

(16)

where ã is the lattice constant. As noted recently [15], the
susceptibility χ̂ of the lattice model is obtained from χ of
the field-theoretic model by the replacement k2 → Ĵk in
the sums and integrals in equations (4, 5), where

Ĵk =
2

ã2
[J(0)− J(k)] = J0k

2 +O(k2
i k

2
j ), (17)

J(k) = (ã/L)d
∑
ij

Jije
ik·(xi−xj), (18)

J0 =
1

d
(ã/L)d

∑
ij

(Jij/ã
2)(xi − xj)

2. (19)

The crucial difference between the field-theoretic and lat-
tice versions of the ϕ4 model comes from the large-L
behavior of the lattice version of the quantity ∆̃1 in
equation (5). Instead of equation (6) we now obtain for
L� ã∫
k

(χ̂−1 + Ĵk)−1 − L−d
∑
k 6=0

(χ̂−1 + Ĵk)−1

= J−1
0 I1(J−1

0 χ̂−1L2)L2−d, (20)

apart from more rapidly vanishing terms. We have found
that such terms are only exponential (rather than power-
law) corrections in the regime L � ξ. This implies that,
for the lattice model in the regime L � ξ, equation (11)
is reduced to

P̂−1/γ = t(L/ξ̂0)1/ν + εA−1
d

[
P̂ − I1(P̂−1)

]
(21)

without power-law corrections. This corresponds to
equation (77) of reference [15]. Here ξ̂0 is the bulk

correlation-length amplitude of the lattice model and P̂ =
χ̂L−γ/νJ0 [15]. Because of the exponential behavior of

P̂−I1(P̂−1) according to equation (12) and because of the
exponential corrections to equation (20) we see that the
lattice ϕ4 model indeed predicts an exponential size de-
pendence for ∆χ̂. The detailed form of the (L-dependent)
amplitude of this exponential size-dependence is nontriv-
ial and will be analyzed elsewhere.

In the following we extend our analysis to the case
n = 1 of the field-theoretic model for 2 < d < 4. The
bare perturbative expressions for the effective parameters
given in equations (68–71) of reference [24] for the field-
theoretic ϕ4 model are valid for general d > 2. Application
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to the critical region for 2 < d < 4 requires to renormalize
these expressions by the L-independent Z-factors of the
bulk theory. We recall that the bulk renormalizations can
well be performed at finite Λ [25]. This does not elimi-

nate the cutoff dependent term ∼ (ΛL)−2 in reff0 for the
field-theoretic model and implies that ∆χ will exhibit the
leading size dependence ∼ (ΛL)−2 above Tc also for n = 1,
2 < d < 4.

A grave consequence of these results is that universal
finite-size scaling near the critical point of a finite system
with periodic boundary conditions is less generally valid
than believed previously [1–24]. Finite-size scaling is not
valid in the region below the dotted line of the L−1− ξ−1

plane (Fig. 1), at least in the large-n limit, for the field-
theoretic ϕ4 model at finite cutoff for d > 2. This region is
of significant interest as it describes the leading finite-size
deviations from asymptotic bulk critical behavior. The vi-
olation of finite-size scaling in this region originates from
the (5ϕ)2 term in equation (2) that approximates the
interaction term Jij(ϕi − ϕj)2 of the ϕ4 lattice Hamilto-
nian, equation (16). The serious defect of this approxi-
mation at finite Λ becomes more and more significant as
L/ξ � 1 increases (arrow in Fig. 1) whereas it is negligible
for ξ/L > 1. This defect does not show up in the Λ→∞
version (or dimensionally regularized version) of renormal-
ized field theory. For a discussion of the case d > 4 we refer
to [26].

From the one-loop finite-size scaling functions of
reference [8] we find the nonexponential behavior ∆χ ∼
O((L/ξ)−d) for n = 1 and 2 < d < 4 above Tc. The
same behavior exists already in the lowest-mode approxi-
mation. The question arises whether higher-loop calcula-
tions would change this L dependence. The corresponding
question for n → ∞ can be answered on the basis of our
exact solution for χ̂ of the ϕ4 lattice model [15]. Approxi-
mating this solution by a one-loop type expansion around
the lowest-mode structure leads to the large-L behavior
∆χ̂ ∼ O((L/ξ)−d) above Tc rather than ∼ e−cL. Thus,
at least for n → ∞, the exponential size dependence is a
non-perturbative feature. We expect, therefore, that a con-
clusive answer of our question requires a non-perturbative
treatment of the ϕ4 lattice theory. Our previous nonper-
turbative order-parameter distribution function [21] is an
appropriate basis for analyzing this problem which will
presumably lead to an exponential size dependence for
∆χ̂ within the ϕ4 lattice model for general n above two
dimensions.

It would be interesting to test the leading finite-size de-
viations from bulk critical behavior by Monte-Carlo sim-
ulations. The absence of terms ∼ (ΛL)−2 would provide
evidence for the failure of the continuum approximation
∼ (5ϕ)2 of the ϕ4 field theory at finite Λ for confined
lattice systems with periodic boundary conditions.
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